The Neural and Computational Basis of Controlled Speed-Accuracy Tradeoff during Task Performance
نویسندگان
چکیده
People are capable, at will, of trading speed for accuracy when performing a task; they can focus on performing accurately at the cost of being slow, or emphasize speed at the cost of decreased accuracy. Here, we used functional magnetic resonance imaging to investigate the neural correlates of this ability. We show increased baseline activity during speed emphasis in a network of areas related to response preparation and execution, including the premotor areas of the frontal lobe, the basal ganglia, the thalamus, and the dorsolateral prefrontal and left parietal cortices. Furthermore, speed emphasis was associated with reduced transient response-related activation in several of these structures, suggesting that because of the greater baseline activity under speed emphasis, less activation is needed in these structures to reach response threshold, consistent with the assumptions of several computational theories. Moreover, we identify the dorsolateral prefrontal cortex as providing the top-down control signal that increases this baseline activity.
منابع مشابه
Wavelet Neural Network with Random Wavelet Function Parameters
The training algorithm of Wavelet Neural Networks (WNN) is a bottleneck which impacts on the accuracy of the final WNN model. Several methods have been proposed for training the WNNs. From the perspective of our research, most of these algorithms are iterative and need to adjust all the parameters of WNN. This paper proposes a one-step learning method which changes the weights between hidden la...
متن کاملPREDICTION OF NONLINEAR TIME HISTORY DEFLECTION OF SCALLOP DOMES BY NEURAL NETWORKS
This study deals with predicting nonlinear time history deflection of scallop domes subject to earthquake loading employing neural network technique. Scallop domes have alternate ridged and grooves that radiate from the centre. There are two main types of scallop domes, lattice and continuous, which the latticed type of scallop domes is considered in the present paper. Due to the large number o...
متن کاملSpeed-Accuracy Tradeoff in Trajectory-Based Tasks with Temporal Constraint
Speed-accuracy tradeoff is a common phenomenon in many types of human motor tasks. In general, the more accurately the task is to be accomplished, the more time it takes, and vice versa. In particular, when users attempt to complete the task with a specified amount of time, the accuracy of the task can be considered as a dependent variable to measure user performance. In this paper we investiga...
متن کاملThe neural basis of the speed-accuracy tradeoff.
In many situations, decision makers need to negotiate between the competing demands of response speed and response accuracy, a dilemma generally known as the speed-accuracy tradeoff (SAT). Despite the ubiquity of SAT, the question of how neural decision circuits implement SAT has received little attention up until a year ago. We review recent studies that show SAT is modulated in association an...
متن کاملNumerical and Neural Network Modeling and control of an Aircraft Propeller
In this paper, parametric and numerical model of the DC motor, connected to aircraft propellers are extracted. This model is required for controlling trust and velocity of the propellers, and consequently, an aircraft. As a result, both of torque and speed of the propeller can be controlled simultaneously which increases the kinematic and kinetic performance of the aircraft. Parametric model of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cognitive neuroscience
دوره 20 11 شماره
صفحات -
تاریخ انتشار 2008